Exercise 12

A particle is moving along a hyperbola $x y=8$. As it reaches the point $(4,2)$, the y-coordinate is decreasing at a rate of $3 \mathrm{~cm} / \mathrm{s}$. How fast is the x-coordinate of the point changing at that instant?

Solution

The aim here is to find $d x / d t$, the rate at which the x-coordinate is changing, at the point $(4,2)$. Differentiate both sides of the given equation with respect to t and use the product rule.

$$
\begin{aligned}
& \frac{d}{d t}(x y)=\frac{d}{d t}(8) \\
& \frac{d x}{d t} y+x \frac{d y}{d t}=0
\end{aligned}
$$

Solve for $d x / d t$.

$$
\frac{d x}{d t}=-\frac{x}{y} \frac{d y}{d t}
$$

The y-coordinate is decreasing at a rate of $3 \mathrm{~cm} / \mathrm{s}$, so $d y / d t=-3 \mathrm{~cm} / \mathrm{s}$. If $x=4 \mathrm{~cm}$ and $y=2 \mathrm{~cm}$, then

$$
\left.\frac{d x}{d t}\right|_{\substack{x=4 \\ y=2}}=-\frac{4 \mathrm{~cm}}{2 \mathrm{~cm}}\left(-3 \frac{\mathrm{~cm}}{\mathrm{~s}}\right)=6 \frac{\mathrm{~cm}}{\mathrm{~s}} .
$$

Therefore, the x-coordinate is increasing at a rate of $6 \mathrm{~cm} / \mathrm{s}$.

